# Collusion in the Austro-Hungarian Sugar Industry 1889–1914

PhD Research Seminar in Microeconomics

Nikolaus Fink<sup>†</sup> Philipp Schmidt-Dengler<sup>‡</sup> Moritz Schwarz<sup>‡</sup> Christine Zulehner<sup>‡</sup>

<sup>†</sup>Rundfunk und Telekom Regulierungs-GmbH

<sup>‡</sup>University of Vienna

• Sugar refineries engaged in a series of cartels in Austria-Hungary 1864–1914

- Sugar refineries engaged in a series of cartels in Austria-Hungary 1864–1914
- After 1888 the state stabilised these cartels with a tax that monitored quantities

- Sugar refineries engaged in a series of cartels in Austria-Hungary 1864–1914
- After 1888 the state stabilised these cartels with a tax that monitored quantities
- Prices increased significantly during these cartels, but so did costs for inputs

- Sugar refineries engaged in a series of cartels in Austria-Hungary 1864–1914
- After 1888 the state stabilised these cartels with a tax that monitored quantities
- Prices increased significantly during these cartels, but so did costs for inputs
- **RQ1:** How much did the cartels undermine market competition?

- Sugar refineries engaged in a series of cartels in Austria-Hungary 1864–1914
- After 1888 the state stabilised these cartels with a tax that monitored quantities
- Prices increased significantly during these cartels, but so did costs for inputs
- **RQ1:** How much did the cartels undermine market competition?
- To measure the cartels' effect we estimate the industry's *conduct parameter*

- Sugar refineries engaged in a series of cartels in Austria-Hungary 1864–1914
- After 1888 the state stabilised these cartels with a tax that monitored quantities
- Prices increased significantly during these cartels, but so did costs for inputs
- **RQ1:** How much did the cartels undermine market competition?
- To measure the cartels' effect we estimate the industry's *conduct parameter*
- **RQ2:** How much did stockpiling before known price increases limit the cartelists market power?

• The sugar industry is a good setting for the conduct parameter methodology

- The sugar industry is a good setting for the conduct parameter methodology
  - $\circ~$  Homogenous good, simple technology, fragmented industry, known cartels

- The sugar industry is a good setting for the conduct parameter methodology
  - $\circ~$  Homogenous good, simple technology, fragmented industry, known cartels
  - · Standard assumptions reasonable approximation of market conditions

- The sugar industry is a good setting for the conduct parameter methodology
  - $\circ~$  Homogenous good, simple technology, fragmented industry, known cartels
  - · Standard assumptions reasonable approximation of market conditions
- The sugar industry played an important role for the monarchy

- The sugar industry is a good setting for the conduct parameter methodology
  - $\circ~$  Homogenous good, simple technology, fragmented industry, known cartels
  - · Standard assumptions reasonable approximation of market conditions
- The sugar industry played an important role for the monarchy
  - $\circ~$  created 10% of total trade flows

- The sugar industry is a good setting for the conduct parameter methodology
  - $\circ~$  Homogenous good, simple technology, fragmented industry, known cartels
  - · Standard assumptions reasonable approximation of market conditions
- The sugar industry played an important role for the monarchy
  - $\circ~$  created 10% of total trade flows
  - influenced railway development

- The sugar industry is a good setting for the conduct parameter methodology
  - $\circ~$  Homogenous good, simple technology, fragmented industry, known cartels
  - · Standard assumptions reasonable approximation of market conditions
- The sugar industry played an important role for the monarchy
  - $\circ~$  created 10% of total trade flows
  - influenced railway development
  - created tax revenue especially through the excise tax on sugar

- The sugar industry is a good setting for the conduct parameter methodology
  - $\circ~$  Homogenous good, simple technology, fragmented industry, known cartels
  - · Standard assumptions reasonable approximation of market conditions
- The sugar industry played an important role for the monarchy
  - $\circ~$  created 10% of total trade flows
  - influenced railway development
  - $\circ~$  created tax revenue especially through the excise tax on sugar
- The sugar industry is still prone to cartelisation nowadays<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Recent cartels: KR 2007, AUT 2010, GER 2014

- Estimation of conduct in homogeneous good industries: Porter (1983)
- In particular, in the (US) sugar industry: Genesove and Mullin (1998)
- Factors determining cartel success: Levenstein and Suslow (2006)
  - $\rightarrow$  We estimate conduct taking into account stockpiling dynamics (monthly data)

• To estimate conduct we need to model demand and marginal cost

- To estimate conduct we need to model demand and marginal cost
- Today:

- To estimate conduct we need to model demand and marginal cost
- Today:
  - Historical background, Industry, Cost Structure, Data

- To estimate conduct we need to model demand and marginal cost
- Today:
  - Historical background, Industry, Cost Structure, Data
  - $\circ~$  IV-estimates for four static models of demand

- To estimate conduct we need to model demand and marginal cost
- Today:
  - Historical background, Industry, Cost Structure, Data
  - $\circ~$  IV-estimates for four static models of demand
  - Corresponding conduct parameter estimates

- To estimate conduct we need to model demand and marginal cost
- Today:
  - Historical background, Industry, Cost Structure, Data
  - $\circ~$  IV-estimates for four static models of demand
  - Corresponding conduct parameter estimates
  - $\circ~$  IV-estimates for a dynamic model of demand

- To estimate conduct we need to model demand and marginal cost
- Today:
  - Historical background, Industry, Cost Structure, Data
  - IV-estimates for four static models of demand
  - Corresponding conduct parameter estimates
  - $\circ~$  IV-estimates for a dynamic model of demand
- Next steps: refine cost, work on dynamic model, estimate counterfactuals

## Austria-Hungary (Schober 1906)



### Value Chain of the Sugar Industry



• 1803: first raw (beet) sugar factory opens in St. Pölten

- 1803: first raw (beet) sugar factory opens in St. Pölten
- Industry expanded as sugar consumption (per capita and in total) increases

- 1803: first raw (beet) sugar factory opens in St. Pölten
- Industry expanded as sugar consumption (per capita and in total) increases
- During 1889-1914 the industry is still fragmented

- 1803: first raw (beet) sugar factory opens in St. Pölten
- Industry expanded as sugar consumption (per capita and in total) increases
- During 1889-1914 the industry is still fragmented
  - $\circ~150\marcel{-200}$  raw sugar factories

- 1803: first raw (beet) sugar factory opens in St. Pölten
- Industry expanded as sugar consumption (per capita and in total) increases
- During 1889-1914 the industry is still fragmented
  - $\circ~150\marcel{-200}$  raw sugar factories
  - 30-60 sugar refineries

- 1803: first raw (beet) sugar factory opens in St. Pölten
- Industry expanded as sugar consumption (per capita and in total) increases
- During 1889-1914 the industry is still fragmented
  - $\circ~150\marcel{-200}$  raw sugar factories
  - 30-60 sugar refineries
  - $\circ~$  individual market shares do not exceed 5% upstream, and 20% downstream

- 1803: first raw (beet) sugar factory opens in St. Pölten
- Industry expanded as sugar consumption (per capita and in total) increases
- During 1889-1914 the industry is still fragmented
  - $\circ~150\marcel{-200}$  raw sugar factories
  - 30-60 sugar refineries
  - $\circ~$  individual market shares do not exceed 5% upstream, and 20% downstream
- After the first cartels some raw sugar producers entered downstream market for refined sugar with lower quality sugar (crystal)

• We estimate the conduct parameter for the refined sugar industry (downstream)

- We estimate the conduct parameter for the refined sugar industry (downstream)
- We treat refined sugar, a commodity, as a homogenous good

- We estimate the conduct parameter for the refined sugar industry (downstream)
- We treat refined sugar, a commodity, as a homogenous good
- Main types of refined sugar exhibit limited differentiation

- We estimate the conduct parameter for the refined sugar industry (downstream)
- We treat refined sugar, a commodity, as a homogenous good
- Main types of refined sugar exhibit limited differentiation
  - packaging (horizontal): sugar loaves, sugar cubes, sugar pieces
- We estimate the conduct parameter for the refined sugar industry (downstream)
- We treat refined sugar, a commodity, as a homogenous good
- Main types of refined sugar exhibit limited differentiation
  - $\circ\,$  packaging (horizontal): sugar loaves, sugar cubes, sugar pieces
  - location (horizontal):  $\frac{2}{3}$  of the refineries were in Bohemia

- We estimate the conduct parameter for the refined sugar industry (downstream)
- We treat refined sugar, a commodity, as a homogenous good
- Main types of refined sugar exhibit limited differentiation
  - $\circ\;$  packaging (horizontal): sugar loaves, sugar cubes, sugar pieces
  - location (horizontal):  $\frac{2}{3}$  of the refineries were in Bohemia
  - purity (vertical): Wiener Raffinade, Pilé Centrifugal Triest

- We estimate the conduct parameter for the refined sugar industry (downstream)
- We treat refined sugar, a commodity, as a homogenous good
- Main types of refined sugar exhibit limited differentiation
  - $\circ\;$  packaging (horizontal): sugar loaves, sugar cubes, sugar pieces
  - location (horizontal):  $\frac{2}{3}$  of the refineries were in Bohemia
  - purity (vertical): Wiener Raffinade, Pilé Centrifugal Triest
- Refined sugar was storable by producers and consumers

- We consider the monarchy as a single market
- Limited competition between Cis- and Transleithania
- Transport cost small fraction of price (excl. tax, below 5%)
- Hardly any imports, but lots of export of refined sugar



Source: Schober (1906)

• Raw sugar came from sugar beet farmers, but also was traded worldwide

- Raw sugar came from sugar beet farmers, but also was traded worldwide
- Austro-Hungarian raw sugar factories produced for the domestic market

- Raw sugar came from sugar beet farmers, but also was traded worldwide
- Austro-Hungarian raw sugar factories produced for the domestic market
- Raw sugar prices did not differ significantly across the empire

- Raw sugar came from sugar beet farmers, but also was traded worldwide
- Austro-Hungarian raw sugar factories produced for the domestic market
- Raw sugar prices did not differ significantly across the empire
- World market price (as well as farmer cooperation) determined what Austro-Hungarian raw sugar producers received from refineries

#### **Industry Association**

- monthly prices (raw)
- monthly prices (ref.)
- monthly quantities
- monthly Ex/Im

# K. & K. Ministries

- sugar taxes
- import tariff
- export subsidy

#### Various

- pop: Schulze (2000)
- GDP: Schulze (2000)
- CPI: Mühlpeck et al. (1979)
- cartel periods: various

#### Timeline of Cartels (Fink 2016) Cartel Agreement Reasons for Start/End





• Our data covers all five cartels periods

- Our data covers all five cartels periods
- As well as three non-cartel periods

- Our data covers all five cartels periods
- As well as three non-cartel periods
- We compare different measures of market power between cartel and non-cartel periods

# Prices - 1st Refinery Cartel



15

#### Input Prices - 1st Refinery Cartel



16

## Input Prices - All Cartels



# Approx. "Return on Sales" $\frac{P-MC}{P}$ over time



| $\frac{P-MC}{P}$ |
|------------------|
| 31%              |
| 26%              |
| 40%              |
| 32%              |
| 41%              |
| 49%              |
| 33%              |
| 44%              |
|                  |

$$MC = c_0 + kP^{RAW} + TAX$$

$$MC = c_0 + kP^{RAW} + TAX$$

• Note:

$$MC = c_0 + kP^{RAW} + TAX$$

- Note:
  - Constant w.r.t. quantity (within capacity)

$$MC = c_0 + kP^{RAW} + TAX$$

- Note:
  - Constant w.r.t. quantity (within capacity)
  - $\circ~$  Known transformation coefficient of raw sugar into refined sugar, k=1.075

$$MC = c_0 + kP^{RAW} + TAX$$

- Note:
  - Constant w.r.t. quantity (within capacity)
  - $\circ~$  Known transformation coefficient of raw sugar into refined sugar, k=1.075
  - Sugar tax directly affected marginal cost

$$MC = c_0 + kP^{RAW} + TAX$$

- Note:
  - Constant w.r.t. quantity (within capacity)
  - $\circ~$  Known transformation coefficient of raw sugar into refined sugar, k=1.075
  - $\circ~$  Sugar tax directly affected marginal cost
  - $\circ\ c_0$  is likely constant no significant technological change we know of

$$MC = c_0 + kP^{RAW} + TAX$$

- Note:
  - Constant w.r.t. quantity (within capacity)
  - $\circ~$  Known transformation coefficient of raw sugar into refined sugar, k=1.075
  - Sugar tax directly affected marginal cost
  - $\circ\ c_0$  is likely constant no significant technological change we know of
  - $\circ~$  Hints about level of  $c_0$  from contemporaneous US industry

• Consider this generalisation of the monopolists' first order condition:

$$P(Q) + \theta Q P'(Q) = MC \tag{1}$$

• Consider this generalisation of the monopolists' first order condition:

$$P(Q) + \theta Q P'(Q) = MC \tag{1}$$

• Q and P are the industry's equilibrium output and prices, MC is marginal cost, and  $\theta$  is the industry's *conduct parameter* 

• Consider this generalisation of the monopolists' first order condition:

$$P(Q) + \theta Q P'(Q) = MC \tag{1}$$

• Q and P are the industry's equilibrium output and prices, MC is marginal cost, and  $\theta$  is the industry's *conduct parameter* 

• Consider this generalisation of the monopolists' first order condition:

$$P(Q) + \theta Q P'(Q) = MC \tag{1}$$

- Q and P are the industry's equilibrium output and prices, MC is marginal cost, and  $\theta$  is the industry's *conduct parameter*
- (1) nests the FOCs of various standard models of competition:

• Consider this generalisation of the monopolists' first order condition:

$$P(Q) + \theta Q P'(Q) = MC \tag{1}$$

- Q and P are the industry's equilibrium output and prices, MC is marginal cost, and  $\theta$  is the industry's *conduct parameter*
- (1) nests the FOCs of various standard models of competition:

•  $\theta = 1$ : Monopoly/Perfect Collusion

• Consider this generalisation of the monopolists' first order condition:

$$P(Q) + \theta Q P'(Q) = MC \tag{1}$$

- Q and P are the industry's equilibrium output and prices, MC is marginal cost, and  $\theta$  is the industry's *conduct parameter*
- (1) nests the FOCs of various standard models of competition:

•  $\theta = 1$ : Monopoly/Perfect Collusion

•  $\theta = 0$ : Perfect Competition

• Consider this generalisation of the monopolists' first order condition:

$$P(Q) + \theta Q P'(Q) = MC \tag{1}$$

- Q and P are the industry's equilibrium output and prices, MC is marginal cost, and  $\theta$  is the industry's *conduct parameter*
- (1) nests the FOCs of various standard models of competition:

• 
$$\theta = 1$$
: Monopoly/Perfect Collusion

- $\circ~\theta=0:$  Perfect Competition
- $\theta = \frac{1}{N}$ : symmetric Cournot with N firms

## Reduced-form Interpretation of $\boldsymbol{\theta}$

• The conduct parameter can also be interpreted as a measure of market power

## Reduced-form Interpretation of $\boldsymbol{\theta}$

• The conduct parameter can also be interpreted as a measure of market power

# Reduced-form Interpretation of $\boldsymbol{\theta}$

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$
### Reduced-form Interpretation of $\boldsymbol{\theta}$

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$

### Reduced-form Interpretation of $\boldsymbol{\theta}$

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$
- b) interpret  $\theta$  as how close the industry is to (frictionless) monopoly market power:

### Reduced-form Interpretation of $\boldsymbol{\theta}$

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$
- b) interpret  $\theta$  as how close the industry is to (frictionless) monopoly market power:

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$
- b) interpret  $\theta$  as how close the industry is to (frictionless) monopoly market power:

$$heta = rac{P-MC}{P \over |rac{1}{\eta}|} = rac{\mathsf{Equilibrium Return on Sales}}{\mathsf{Monopoly Return on Sales}}$$

• To estimate  $\theta$  we need to:

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$
- b) interpret  $\theta$  as how close the industry is to (frictionless) monopoly market power:

$$heta = rac{P-MC}{P \over |rac{1}{\eta}|} = rac{\mathsf{Equilibrium Return on Sales}}{\mathsf{Monopoly Return on Sales}}$$

- To estimate  $\theta$  we need to:
  - Specify and estimate a demand function

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$
- b) interpret  $\theta$  as how close the industry is to (frictionless) monopoly market power:

$$heta = rac{P-MC}{P \over |rac{1}{\eta}|} = rac{\mathsf{Equilibrium Return on Sales}}{\mathsf{Monopoly Return on Sales}}$$

- To estimate  $\theta$  we need to:
  - $\circ~$  Specify and estimate a demand function
  - Derive the corresponding pricing rule (FOC)

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$
- b) interpret  $\theta$  as how close the industry is to (frictionless) monopoly market power:

$$heta = rac{P-MC}{P \over |rac{1}{\eta}|} = rac{\mathsf{Equilibrium Return on Sales}}{\mathsf{Monopoly Return on Sales}}$$

- To estimate  $\theta$  we need to:
  - Specify and estimate a demand function
  - $\circ~$  Derive the corresponding pricing rule (FOC)
  - $\circ~$  Plug in the estimated demand parameters

- The conduct parameter can also be interpreted as a measure of market power
- a) interpret  $\theta$  as return on sales adjusted for demand elasticity:  $\theta = |\eta| \frac{P-MC}{P}$
- b) interpret  $\theta$  as how close the industry is to (frictionless) monopoly market power:

$$heta = rac{P-MC}{P \over |rac{1}{\eta}|} = rac{\mathsf{Equilibrium Return on Sales}}{\mathsf{Monopoly Return on Sales}}$$

- To estimate  $\theta$  we need to:
  - Specify and estimate a demand function
  - $\circ~$  Derive the corresponding pricing rule (FOC)
  - Plug in the estimated demand parameters
  - Estimate the pricing rule (supply equation)

- We consider demand of the form  $Q(P)=\beta(\alpha-P)^{\gamma}$ 

- We consider demand of the form  $Q(P)=\beta(\alpha-P)^{\gamma}$
- We estimate the four specifications from Genesove and Mullin (1998):

- We consider demand of the form  $Q(P)=\beta(\alpha-P)^{\gamma}$
- We estimate the four specifications from Genesove and Mullin (1998):

- We consider demand of the form  $Q(P)=\beta(\alpha-P)^{\gamma}$
- We estimate the four specifications from Genesove and Mullin (1998):

Quadratic 
$$(\gamma = 2)$$
 $\ln Q = \ln(\beta) + 2\ln(\alpha - P) + \epsilon$ (2)Linear  $(\gamma = 1)$  $Q = \beta(\alpha - P) + \epsilon$ (3)Log-Linear  $(\alpha = 0)$  $\ln Q = \ln(-\beta) + \gamma \ln(P) + \epsilon$ (4)

Exponential 
$$(\gamma, \alpha \to \infty)$$
  $\ln Q = \ln(\beta) + \frac{\gamma}{\alpha}P + \epsilon$  (5)

• (3)-(5) are linear in parameters, (2) is non-linear in  $\alpha$  (need NLIV)

- We consider demand of the form  $Q(P)=\beta(\alpha-P)^{\gamma}$ 

Linear  $(\gamma = 1)$ 

• We estimate the four specifications from Genesove and Mullin (1998):

Quadratic 
$$(\gamma = 2)$$
  $\ln Q = \ln(\beta) + 2\ln(\alpha - P) + \epsilon$  (2)

$$Q = \beta(\alpha - P) + \epsilon \tag{3}$$

Log-Linear 
$$(\alpha = 0)$$
  $\ln Q = \ln(-\beta) + \gamma \ln(P) + \epsilon$  (4)

Exponential 
$$(\gamma, \alpha \to \infty)$$
  $\ln Q = \ln(\beta) + \frac{\gamma}{\alpha}P + \epsilon$  (5)

- (3)-(5) are linear in parameters, (2) is non-linear in  $\alpha$  (need NLIV)
- We instrument price with raw sugar prices, taxes, and cartel dates

$$\begin{array}{ll} \mbox{Quadratic } (\gamma=2) & \eta:=\frac{\partial Q}{\partial P}\frac{P}{Q}=-2\frac{P}{\alpha-P} \\ \mbox{Linear } (\gamma=1) & \eta:=\frac{\partial Q}{\partial P}\frac{P}{Q}=-\beta\frac{P}{Q} \\ \mbox{Log-Linear } (\alpha=0) & \eta:=\frac{\partial Q}{\partial P}\frac{P}{Q}=\gamma \\ \mbox{Exponential } (\gamma,\alpha\to\infty) & \eta:=\frac{\partial Q}{\partial P}\frac{P}{Q}=\frac{\gamma}{\alpha}P \end{array}$$

|                                     | (1)       | (2)           | (3)        | (4)         |
|-------------------------------------|-----------|---------------|------------|-------------|
|                                     | Quadratic | Linear        | Log-Linear | Exponential |
| Ref. Sugar Price                    | 214.02*** | -4,784.21***  | -1.41***   | -0.02***    |
|                                     | (20.87)   | (762.06)      | (0.24)     | (0.00)      |
| Intercept                           | 12.09***  | 621,501.59*** | 18.47***   | 13.58***    |
|                                     | (4.23)    | (70531.29)    | (1.08)     | (0.26)      |
| Year FE                             | Yes       | Yes           | Yes        | Yes         |
| Avg. Elasticity $\eta(ar{Q},ar{P})$ | -1.45     | -1.51         | -1.41      | -1.44       |
| F-Stat (MOP 2013)                   |           | 136           | 174        | 136         |
| Obs                                 | 302       | 302           | 302        | 302         |

Robust standard errors in parenthesis. \* p<0.1, \*\* p<0.05, \*\*\* p<0.01.

Estimates for  $\eta$  in line with the literature.

#### **Elasticities over time**



2 outliers removed (from linear model)

# Elasticity-adjusted Return on Sales $|\eta|rac{P-MC}{P}$



• The pricing rule for the considered demand is given by:

• The pricing rule for the considered demand is given by:

• The pricing rule for the considered demand is given by:

$$P(MC) = \frac{\theta \alpha + \gamma MC}{\gamma + \theta}$$

• The pricing rule for the considered demand is given by:

$$P(MC) = \frac{\theta \alpha + \gamma MC}{\gamma + \theta}$$

• Marginal cost is given by:

• The pricing rule for the considered demand is given by:

$$P(MC) = \frac{\theta \alpha + \gamma MC}{\gamma + \theta}$$

• Marginal cost is given by:

• The pricing rule for the considered demand is given by:

$$P(MC) = \frac{\theta \alpha + \gamma MC}{\gamma + \theta}$$

• Marginal cost is given by:

$$MC = c_0 + kP^{RAW} + TAX$$

• The pricing rule for the considered demand is given by:

$$P(MC) = \frac{\theta \alpha + \gamma MC}{\gamma + \theta}$$

• Marginal cost is given by:

$$MC = c_0 + kP^{RAW} + TAX$$

• We allow for potentially time-varying conduct:

• The pricing rule for the considered demand is given by:

$$P(MC) = \frac{\theta \alpha + \gamma MC}{\gamma + \theta}$$

• Marginal cost is given by:

$$MC = c_0 + kP^{RAW} + TAX$$

• We allow for potentially time-varying conduct:

• The pricing rule for the considered demand is given by:

$$P(MC) = \frac{\theta \alpha + \gamma MC}{\gamma + \theta}$$

• Marginal cost is given by:

$$MC = c_0 + kP^{RAW} + TAX$$

• We allow for potentially time-varying conduct:

$$\theta = \theta_0 + \theta_1 CARTEL$$

$$\begin{array}{ll} \mbox{Quadratic} & P = \frac{\hat{\alpha}\theta + 2(\bar{c}_0 + kP^{RAW} + TAX)}{2 + \theta} + \nu & (6) \\ \mbox{Linear} & P = \frac{\hat{\alpha}\theta + (\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{1 + \theta} + \nu & (7) \\ \mbox{Log-Linear} & P = \frac{\hat{\gamma}(\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{\hat{\gamma} + \theta} + \nu & (8) \\ \mbox{Exponential} & P = -\frac{\theta}{\hat{\gamma}/\hat{\alpha}} + (\bar{c}_0 + \bar{k}P^{RAW} + TAX) + \nu & (9) \end{array}$$

------

• For  $\alpha$  and  $\gamma$  we plug in our estimates from the demand side

$$\begin{array}{ll} \mbox{Quadratic} & P = \frac{\hat{\alpha}\theta + 2(\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{2 + \theta} + \nu & (6) \\ \mbox{Linear} & P = \frac{\hat{\alpha}\theta + (\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{1 + \theta} + \nu & (7) \\ \mbox{Log-Linear} & P = \frac{\hat{\gamma}(\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{\hat{\gamma} + \theta} + \nu & (8) \\ \mbox{Exponential} & P = -\frac{\theta}{\hat{\gamma}/\hat{\alpha}} + (\bar{c}_0 + \bar{k}P^{RAW} + TAX) + \nu & (9) \end{array}$$

- For  $\alpha$  and  $\gamma$  we plug in our estimates from the demand side
- $\bullet\,$  For  $c_0$  and k we make use of the cost information available

$$\begin{array}{ll} \mbox{Quadratic} & P = \frac{\hat{\alpha}\theta + 2(\bar{c}_0 + kP^{RAW} + TAX)}{2 + \theta} + \nu & (6) \\ \mbox{Linear} & P = \frac{\hat{\alpha}\theta + (\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{1 + \theta} + \nu & (7) \\ \mbox{Log-Linear} & P = \frac{\hat{\gamma}(\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{\hat{\gamma} + \theta} + \nu & (8) \\ \mbox{Exponential} & P = -\frac{\theta}{\hat{\gamma}/\hat{\alpha}} + (\bar{c}_0 + \bar{k}P^{RAW} + TAX) + \nu & (9) \end{array}$$

D 4 TT7

- For  $\alpha$  and  $\gamma$  we plug in our estimates from the demand side
- For  $c_0$  and k we make use of the cost information available
- No endogeneity problem as MC and thus P is not a function of Q

$$\begin{array}{ll} \mbox{Quadratic} & P = \frac{\hat{\alpha}\theta + 2(\bar{c}_0 + kP^{RAW} + TAX)}{2 + \theta} + \nu & (6) \\ \mbox{Linear} & P = \frac{\hat{\alpha}\theta + (\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{1 + \theta} + \nu & (7) \\ \mbox{Log-Linear} & P = \frac{\hat{\gamma}(\bar{c}_0 + \bar{k}P^{RAW} + TAX)}{\hat{\gamma} + \theta} + \nu & (8) \\ \mbox{Exponential} & P = -\frac{\theta}{\hat{\gamma}/\hat{\alpha}} + (\bar{c}_0 + \bar{k}P^{RAW} + TAX) + \nu & (9) \end{array}$$

- For  $\alpha$  and  $\gamma$  we plug in our estimates from the demand side
- For  $c_0$  and k we make use of the cost information available
- No endogeneity problem as MC and thus P is not a function of Q
- We estimate  $\theta_0$  and  $\theta_1$  with Non-linear Least Squares

#### Results – Conduct based on static demand results

|        | (1)       | (2)     | (3)        | (4)           |
|--------|-----------|---------|------------|---------------|
|        | Quadratic | Linear  | Log-Linear | E x ponential |
| theta0 |           |         |            |               |
|        | 0.09***   | 0.12*** | 0.10***    | 0.10***       |
|        | (0.01)    | (0.01)  | (0.01)     | (0.01)        |
| theta1 |           |         |            |               |
|        | 0.17***   | 0.28*** | 0.15***    | 0.16***       |
|        | (0.02)    | (0.03)  | (0.01)     | (0.02)        |
| Obs    | 302       | 302     | 302        | 302           |

Robust Standard errors in parenthesis (Newey-West, 2 Lags)

\* p<0.1, \*\* p<0.05, \*\*\* p<0.01

• H0: 
$$\theta_0 = 0$$
, H0:  $\theta_1 = 0$ , as well as H0:  $\theta_0 = \theta_1$  are rejected

#### Results – Conduct based on static demand results

|        | (1)       | (2)     | (3)        | (4)           |
|--------|-----------|---------|------------|---------------|
|        | Quadratic | Linear  | Log-Linear | E x ponential |
| theta0 |           |         |            |               |
|        | 0.09***   | 0.12*** | 0.10***    | 0.10***       |
|        | (0.01)    | (0.01)  | (0.01)     | (0.01)        |
| theta1 |           |         |            |               |
|        | 0.17***   | 0.28*** | 0.15***    | 0.16***       |
|        | (0.02)    | (0.03)  | (0.01)     | (0.02)        |
| Obs    | 302       | 302     | 302        | 302           |

Robust Standard errors in parenthesis (Newey-West, 2 Lags)

\* p<0.1, \*\* p<0.05, \*\*\* p<0.01

- H0:  $\theta_0 = 0$ , H0:  $\theta_1 = 0$ , as well as H0:  $\theta_0 = \theta_1$  are rejected
- By comparison, Genesove and Mullin (1998) obtain  $\hat{\theta} = 0.038$  (SE of 0.024)

• Reduced-form interpretation

- Reduced-form interpretation
  - $\circ\,$  in non-cartel periods refineries exerted about 10% of the possible market power

#### • Reduced-form interpretation

- $\circ\,$  in non-cartel periods refineries exerted about 10% of the possible market power
- $\circ~$  in cartel periods refineries exerted about 25% of the possible market power

#### • Reduced-form interpretation

- $\circ\,$  in non-cartel periods refineries exerted about 10% of the possible market power
- $\circ~$  in cartel periods refineries exerted about 25% of the possible market power
- Structural as if interpretation
#### • Reduced-form interpretation

- $\circ\,$  in non-cartel periods refineries exerted about 10% of the possible market power
- $\circ\,$  in cartel periods refineries exerted about 25% of the possible market power
- Structural as if interpretation
  - refineries did not behave competitively in non-cartel periods, it behaved like 10 symmetric firms playing Cournot

#### • Reduced-form interpretation

- $\circ\,$  in non-cartel periods refineries exerted about 10% of the possible market power
- $\circ\,$  in cartel periods refineries exerted about 25% of the possible market power
- Structural as if interpretation
  - refineries did not behave competitively in non-cartel periods, it behaved like 10 symmetric firms playing Cournot
  - refineries behaved less competitively in cartel periods, it behaved like 4 symmetric firms playing Cournot

# Counterfactual prices without cartels ( $\theta_1 = 0$ )



• Preliminary Results

• Preliminary Results

 $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$ 

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods ( $\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods ( $\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand
- Caveats:

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods ( $\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand
- Caveats:
  - · Demand might be dynamic, which can upward bias static elasticity estimates

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods ( $\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand
- Caveats:
  - · Demand might be dynamic, which can upward bias static elasticity estimates
  - · The underlying cost information could be more precise

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods ( $\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand
- Caveats:
  - · Demand might be dynamic, which can upward bias static elasticity estimates
  - The underlying cost information could be more precise
  - Standard errors of conduct parameters are not adjusted for additional uncertainty from estimated demand parameters

• Gather more precise information about cost, estimate cost parameters

- Gather more precise information about cost, estimate cost parameters
- Bootstrap SE of supply equation

- Gather more precise information about cost, estimate cost parameters
- Bootstrap SE of supply equation
- Estimate more dynamic demand specifications, e.g., vary definition of states

- Gather more precise information about cost, estimate cost parameters
- Bootstrap SE of supply equation
- Estimate more dynamic demand specifications, e.g., vary definition of states
- Estimate conduct specifications for dynamic model

• Preliminary Results



- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$



- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods ( $\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand
- Caveats:

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand
- Caveats:
  - $\circ~$  Demand might be dynamic, which can upward bias static elasticity estimates

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand
- Caveats:
  - $\circ~$  Demand might be dynamic, which can upward bias static elasticity estimates
  - $\circ\,$  The underlying cost information could be more precise

- Preliminary Results
  - $\circ~$  Conduct parameter is significantly higher during cartel periods  $(\hat{\theta}_1>0)$
  - $\circ~$  Refineries exerted 25% of the possible market power during cartels
  - Refineries changed conduct from industry resembling symmetric Cournot with 10 firms to symmetric Cournot with 4 firms
  - $\circ\,$  These results are robust to several static models of demand
- Caveats:
  - $\circ~$  Demand might be dynamic, which can upward bias static elasticity estimates
  - The underlying cost information could be more precise
  - Standard errors of conduct parameters are not adjusted for additional uncertainty from estimated demand parameters

# Appendix

#### Fit of Demand Model: static

#### Fit of Demand Models



#### Hints of anticipating price increase before first tax increase



#### Hints of anticipating price decrease towards end of 1st integrated cartel



#### **Cheap Periods**



4

$$X=\omega X^N+(1-\omega)X^S$$

• Consider aggregate purchases X of the form:

$$X=\omega X^N+(1-\omega)X^S$$

• There are two types of consumers:

$$X=\omega X^N+(1-\omega)X^S$$

- There are two types of consumers:
  - $\circ~$  non-storers who purchase  $X^N=\beta(\alpha-P)$  weighted by  $\omega\in[0,1]$

$$X=\omega X^N+(1-\omega)X^S$$

- There are two types of consumers:
  - $\circ~$  non-storers who purchase  $X^N=\beta(\alpha-P)$  weighted by  $\omega\in[0,1]$
  - $\circ~{\rm storers}$  who purchase  $X^S$  weighted by  $(1-\omega)$

$$X=\omega X^N+(1-\omega)X^S$$

- There are two types of consumers:
  - non-storers who purchase  $X^N = \beta(\alpha P)$  weighted by  $\omega \in [0, 1]$
  - $\circ~{\rm storers}$  who purchase  $X^S$  weighted by  $(1-\omega)$
- Storers have same per period demand needs as non-storer

$$X=\omega X^N+(1-\omega)X^S$$

- There are two types of consumers:
  - non-storers who purchase  $X^N = \beta(\alpha P)$  weighted by  $\omega \in [0, 1]$
  - $\circ\,$  storers who purchase  $X^S$  weighted by  $(1-\omega)$
- Storers have same per period demand needs as non-storer
- But storers can store at no cost for 1 period and know prices 1 period in advance
### Simple Dynamic Model (adapted from Hendel and Nevo 2013)

• Consider aggregate purchases X of the form:

$$X=\omega X^N+(1-\omega)X^S$$

- There are two types of consumers:
  - non-storers who purchase  $X^N = \beta(\alpha P)$  weighted by  $\omega \in [0, 1]$
  - $\circ~{\rm storers}$  who purchase  $X^S$  weighted by  $(1-\omega)$
- Storers have same per period demand needs as non-storer
- But storers can store at no cost for 1 period and know prices 1 period in advance
- Thus, they purchase more than their period consumption when prices are about to rise

• In a given period t a product is either at sale ("cheap") or not  $\{C, N\}$ 

- In a given period t a product is either at sale ("cheap") or not  $\{C, N\}$
- Storers only store for 1 period, and thus only keep track of yesterday t-1 and today t, i.e.,  $\mathcal{S}=\{(s_{t-1},s_t)\}$

- In a given period t a product is either at sale ("cheap") or not  $\{C, N\}$
- Storers only store for 1 period, and thus only keep track of yesterday t-1 and today t, i.e.,  $\mathcal{S}=\{(s_{t-1},s_t)\}$
- This gives four states of the world  $\{C,N\}^2 = \{(N,N), (C,N), (N,C), (C,C)\}$

- In a given period t a product is either at sale ("cheap") or not  $\{C, N\}$
- Storers only store for 1 period, and thus only keep track of yesterday t-1 and today t, i.e.,  $\mathcal{S}=\{(s_{t-1},s_t)\}$
- This gives four states of the world  $\{C,N\}^2 = \{(N,N), (C,N), (N,C), (C,C)\}$
- E.g., state (C, N) means that there was a sale at t 1, but no sale at t

$$X_t^s(p_{t-1}, p_t, p_{t+1}) = \begin{cases} Q_t^s(p_t) & \text{NN} \\ Q_t^s(p_t) + Q_{t+1}^s(p_t) & \text{NC} \\ 0 & \text{CN} \\ Q_{t+1}^s(p_t) & \text{CC} \end{cases}$$

• Intuition for identification: purchases in each state can be expressed as linear combination of others

### Storers' Purchases



• Current definition (WIP):

- Current definition (WIP):
  - $\circ~1$  period before cartel starts

- Current definition (WIP):
  - $\circ~1$  period before cartel starts
  - $\circ~1$  period before excise tax for sugar increases

- Current definition (WIP):
  - $\circ~1$  period before cartel starts
  - $\circ~1$  period before excise tax for sugar increases
  - $\circ~$  Today's price is more than 5% lower than the average price of the last 2 months

- Current definition (WIP):
  - $\circ~1$  period before cartel starts
  - $\circ~1$  period before excise tax for sugar increases
  - $\circ~$  Today's price is more than 5% lower than the average price of the last 2 months
- Alternatives

- Current definition (WIP):
  - $\circ$  1 period before cartel starts
  - $\circ~1$  period before excise tax for sugar increases
  - $\circ~$  Today's price is more than 5% lower than the average price of the last 2 months
- Alternatives
  - Set absolute threshold (note trends in prices)

- Current definition (WIP):
  - $\circ$  1 period before cartel starts
  - $\circ~1$  period before excise tax for sugar increases
  - $\circ~$  Today's price is more than 5% lower than the average price of the last 2 months
- Alternatives
  - Set absolute threshold (note trends in prices)
  - $\,\circ\,$  Today's price is, e.g., 5% lower than tomorrow's price

$$X_t(P_t) = \omega X_t^N(P_t) + (1-\omega) X_t^S(P_t,S_t) + \varepsilon_t$$

• We want to estimate parameters  $\alpha, \beta, \omega$  with NLIV

$$X_t(P_t) = \omega X_t^N(P_t) + (1-\omega) X_t^S(P_t,S_t) + \varepsilon_t$$

- We want to estimate parameters  $\alpha,\beta,\omega$  with NLIV
- As with static demand, we instrument price with raw sugar prices, cartel dates, and taxes

|                                             | Estimate | SE     |
|---------------------------------------------|----------|--------|
| α                                           | 134.75   | 8.59   |
| eta                                         | 4501     | 799.34 |
| $\omega_{\mathrm transform}$                | 1.3      | 0.84   |
| ω                                           | 0.79     |        |
| Year FE                                     | Yes      |        |
| $\eta(ar{Q},ar{P})$ (average across states) | -1.38    |        |
| Obs                                         | 302      |        |

| State | $\eta(\bar{Q},\bar{P})$ |
|-------|-------------------------|
| NN    | -1.40                   |
| NC    | -1.18                   |
| CN    | -1.72                   |
| CC    | 67                      |

• Note: we mostly observe state NN in the data

### Fit of Demand model: dynamic



## **1st Refinery Cartel**



2nd Refinery Cartel



# **3nd Refinery Cartel**



# 1st Integrated Cartel



# **2st Integrated Cartel**



#### Current Quantities are a function of Previous Quantities

. reg c L.c L2.c //L3.c

| Source            | SS                       | df                  | MS                       | Numbe                 | r of obs            | =        | 306                        |
|-------------------|--------------------------|---------------------|--------------------------|-----------------------|---------------------|----------|----------------------------|
| Model<br>Residual | 2.2028e+12<br>1.4941e+12 | 2<br>303            | 1.1014e+12<br>4.9309e+09 | F(2,<br>Prob<br>R-squ | 303)<br>> F<br>ared | =        | 223.37<br>0.0000<br>0.5959 |
| Total             | 3.6969e+12               | 305                 | 1.2121e+10               | Root                  | MSE                 | =        | 70220                      |
| c                 | Coefficient              | Std. err.           | t                        | P> t                  | [95% cc             | onf.     | interval]                  |
| c<br>L1.<br>L2.   | .5531197<br>.2681282     | .0553958<br>.055781 | 9.98<br>4.81             | 0.000<br>0.000        | .444110             | 04<br>L1 | .6621289<br>.3778953       |
| _cons             | 59923.69                 | 13463.93            | 4.45                     | 0.000                 | 33429.0             | 94       | 86418.35                   |

## Montiel Olea-Pfluegger (2013)

| • | weaki  | vtest |
|---|--------|-------|
| ( | obs=30 | 2)    |

| Montiel-Pflueger | robust | weak | instrument | test |
|------------------|--------|------|------------|------|
|------------------|--------|------|------------|------|

| Effective F statistic:  | 135.709 |  |
|-------------------------|---------|--|
| Confidence level alpha: | 5%      |  |

| Critical Values      | TSLS   | LIML   |
|----------------------|--------|--------|
| % of Worst Case Bias |        |        |
| tau=5%               | 29.466 | 12.547 |
| tau=10%              | 17.193 | 8.028  |
| tau=20%              | 10.577 | 5.506  |
| tau=30%              | 8.189  | 4.570  |

\_\_\_\_\_

. actest, lags(5) robust

Cumby-Huizinga test for autocorrelation

H0: variable is MA process up to order q

HA: serial correlation present at specified lags >q

| H0: q=0 (:<br>HA: s.c.                    | serially uncorr<br>present at rang          | related<br>ge spec    | )<br>ified                                     | H0:<br>HA:            | q=specified la<br>s.c. present a          | ag–1<br>at lag   | specified                                      |
|-------------------------------------------|---------------------------------------------|-----------------------|------------------------------------------------|-----------------------|-------------------------------------------|------------------|------------------------------------------------|
| lags                                      | chi2                                        | df                    | p-val                                          | lag                   | chi2                                      | df               | p-val                                          |
| 1 - 1<br>1 - 2<br>1 - 3<br>1 - 4<br>1 - 5 | 0.462<br>4.759<br>9.169<br>10.011<br>19.462 | 1<br>2<br>3<br>4<br>5 | 0.4966<br>0.0926<br>0.0271<br>0.0402<br>0.0016 | 1<br>2<br>3<br>4<br>5 | 0.462<br>7.995<br>2.406<br>0.526<br>2.598 | 1<br>1<br>1<br>1 | 0.4966<br>0.0047<br>0.1208<br>0.4685<br>0.1070 |

Test allows predetermined regressors/instruments Test robust to heteroskedasticity • Genesove and Mullin (1998) US dollar value

- Genesove and Mullin (1998) US dollar value
- exchange rate in that year(s)

- Genesove and Mullin (1998) US dollar value
- exchange rate in that year(s)
- adjustment with price index (real value)

#### Marginal cost intercept over time



#### But marginal cost intercept is small part of overall marginal cost



#### **Elasticity-adjusted Return on Sales**



#### **Raw Sugar Prices**



- Price of raw sugar in Aussig (K/100 kg)
- Price of raw sugar in Moravia (K/100 kg)

### Comparison with world market price (Triest)



Price of refined sugar in Vienna (K/100 kg, excl. tax)

Price of refined sugar in Triest (K/100 kg, excl. tariff)

#### Average difference to world market price (Triest)




• Sugar was produced and thus sold mainly during last quarter of calendar year



#### Season

- Sugar was produced and thus sold mainly during last quarter of calendar year
- "sugar year" lasting from Sept-Aug captures harvest period ("Kampagne")



| Cartel     | Duration | Reason for Start              | Reason for End          |
|------------|----------|-------------------------------|-------------------------|
| 1st        | 1891m10- | Gov Tax                       | Looming entry from new  |
| refinery   | 1894m9   |                               | refineries              |
| 2nd        | 1895m11- | Include new refineries        | Start of 1st integrated |
| refinery   | 1897m10  |                               | cartel                  |
| 1st        | 1897m11- | Include upstream to foreclose | International trade     |
| integrated | 1903m8   | entry                         | agreement               |
| 3rd        | 1906m10- | Separate Austrian and         | Start of 2nd integrated |
| refinery   | 1911m9   | Hungarian Agreement           | cartel                  |
| 2nd        | 1911m10  | Forbid entry from upstream    | World War I             |
| integrated | -1914m8  | (crystal)                     |                         |

• Law with cartel agreement establised terms of cartel

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade
  - $\circ\,$  Aggregate sales were published on the 10th of each month for the preceding month

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade
  - $\circ\,$  Aggregate sales were published on the 10th of each month for the preceding month
  - Daily reporting of prices at the commodity exchanges

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade
  - $\circ\,$  Aggregate sales were published on the 10th of each month for the preceding month
  - $\circ~$  Daily reporting of prices at the commodity exchanges
- Deterrence:

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade
  - $\circ\,$  Aggregate sales were published on the 10th of each month for the preceding month
  - Daily reporting of prices at the commodity exchanges

#### • Deterrence:

 $\circ~$  penalty of 20 K per 100 kg of sugar for deviations from target

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade
  - $\circ\,$  Aggregate sales were published on the 10th of each month for the preceding month
  - Daily reporting of prices at the commodity exchanges

#### • Deterrence:

- $\circ~$  penalty of 20 K per 100 kg of sugar for deviations from target
- $\circ~$  late notification of information was sanctioned with up to 400 K

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade
  - $\circ\,$  Aggregate sales were published on the 10th of each month for the preceding month
  - Daily reporting of prices at the commodity exchanges

#### • Deterrence:

- $\circ~$  penalty of 20 K per 100 kg of sugar for deviations from target
- $\circ~$  late notification of information was sanctioned with up to 400 K

#### • External stability:

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade
  - $\circ\,$  Aggregate sales were published on the 10th of each month for the preceding month
  - Daily reporting of prices at the commodity exchanges

#### • Deterrence:

- $\circ~$  penalty of 20 K per 100 kg of sugar for deviations from target
- $\circ~$  late notification of information was sanctioned with up to 400 K

#### • External stability:

 $\circ\;$  over the years they extended the cartel agreement to new entrants and upstream factories

- Law with cartel agreement establised terms of cartel
  - $\circ~$  fix annual output and divide it among refineries
  - $\circ~$  no forward trading
- Reasons why the cartel worked (categories based on Ivaldi 2007):
- Transparency:
  - $\circ~$  Shared access to accounting books of refineries, later: notify every trade
  - $\circ\,$  Aggregate sales were published on the 10th of each month for the preceding month
  - Daily reporting of prices at the commodity exchanges

#### • Deterrence:

- $\circ~$  penalty of 20 K per 100 kg of sugar for deviations from target
- $\circ~$  late notification of information was sanctioned with up to 400 K

#### • External stability:

- $\circ\;$  over the years they extended the cartel agreement to new entrants and upstream factories
- also upstream factories committed not to sell to new entrants (Back)



Genesove D, Mullin WP (1998) Testing Static Oligopoly Models: Conduct and Cost in the Sugar Industry, 1890-1914. *The RAND Journal of Economics* 29(2):355–377.
Hendel I, Nevo A (2013) Intertemporal Price Discrimination in Storable Goods Markets. *American Economic Review* 103(7):2722–2751.

Levenstein MC, Suslow VY (2006) What Determines Cartel Success? *Journal of Economic Literature* 44(1):43–95.

Porter RH (1983) A Study of Cartel Stability: The Joint Executive Committee, 1880-1886. *The Bell Journal of Economics* 14(2):301–314.